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Abstraet--Stationary transport of a scalar quantity, such as heat, mass of an admixture or electric charge, 
through a mcderately concentrated composite material that contains identical spherical inclusions imbedded 
into a continaous matrix is considered. The packing of the spheres is locally random but the material is 
slightly non-uniform in the sense that there exists a gradient of the mean concentration, the linear scale of 
which is much larger than the size of the sphere. Conduction is shown to be characterized by concentration 
dependent bulk conductivity coefficients that make up a second-order tensor. In particular, the occurrence 
of an additional constituent of the transient flux of the quantity which is directed along the concentrational 
gradient is possible. The conductivities are expressible in terms of two scalar functions of both concentration 
and its squared gradient which are found for moderately concentrated materials and an arbitrary relation 

between the conductivities of a pure matrix and of the material of an inclusion. 

1. INTRODUCTION 

When the length-scale of  a heat transfer process in a 
heterogeneous medilma considerably exceeds the linear 
microscale of  the inner structure of  the medium, the 
process can be described with the help of  cont inuum 
methods. In such a case the medium is regarded as an 
arrangement of  juxtaposed interacting continua being 
representatives of  different phases or  discernable com- 
ponents of  the medium. Each fictitious continuum 
possesses its own mean temperature. It is char- 
acterized by a specific effective thermal conductivity. 
If  the medium is spatially uniform in the macroscopic 
respect, this enables one to express the transient heat 
fluxes through the continua as vectors proport ional  to 
the gradients of  the corresponding mean temperatures 
and, further, to formulate heat transfer equations on 
the basis of  either volume [1, 2] or ensemble [3] aver- 
aging technique, heat exchange fluxes between the 
continua being allowed for in addition. Then there 
arises the problem ef  finding out relevant constitutive 
equations, that is, o f  obtaining the effective con- 
ductivities as well as the quantities that specify the 
exchange fluxes as functions of  both structural charac- 
teristics of  the medium and physical parameters of  
its phases. Under  sl:eady conditions the mean phase 
temperatures normally coincide between themselves 
and the exchange fluxes vanish everywhere save for 
narrow regions adjacent to the boundaries of  the 
medium. Then merely the phase conductivities remain 
to be specified. 

Similar problems appear when one deals with the 
stationary transfer c,f the mass of  an admixture and of  
electric charge, as x~ell as while studying the effective 

electric and magnetic permeabilities of  heterogeneous 
media at zero frequency. Due to the sameness of  the 
mathematical  formulations of  all these problems, the 
final results concerning the effective diffusivity, electric 
conductivity and indicated permeabilities are basically 
identical to those having relevance to thermal con- 
ductivity. This means that it is quite sufficient to pay 
attention only to heat transfer, as is the case with the 
present paper. It is worth mentioning, however, that 
similar problems identifying rheological equations 
and determining the effective viscosity of  suspensions 
or elastic moduli of  solid bodies are somewhat differ- 
ent since they involve the investigation of  the transfer 
of  momentum which is a vector quantity. 

A number  of  different approaches have been put 
forward in order to get reliable representations of  the 
effective properties of  heterogeneous media of  differ- 
ent structure and, in particular, of  disperse systems. 
The number of  papers written on the subject is enor- 
mous ; a review of  conventional methods suggested so 
far for this purpose in view is to be found in refs. [4, 
5]. In what follows, a modern method will be used 
which is based on the ensemble averaging technique, 
and the ideas of  the self-consistent field theory which 
was developed in ref. [6]. 

A general feature of  the great majority of  attempts 
to study the effective thermal conductivity and other 
bulk properties of  disperse mixtures is that a mixture 
under consideration is commonly viewed, in either an 
explicit or  implicit way, as a macroscopically uniform 
one. This means that all its macroscopic charac- 
teristics are presumed to be independent of  coor- 
dinates. Then the tensor structure of  the transient 
fluxes of  heat, mass, momentum and other quantities 
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NOMENCLATURE 

radius of spheres e 
unit tensor O, q~ 
length-scale of dispersion ~¢ 
inhomogeneity A l, A2 
unit vector in direction of temperature 2 
gradient 20, 2~ 
unit vector in direction of 
concentration gradient p 
Legendre polynomial 
heat flux z 
dimensionless radius-vector with 
origin at test sphere centre 
dimensionless radius-vector 
dimensionless coordinates. 

Greek symbols 
r,  ~ coefficients introduced in equation (3) 

small parameter, a /L  
angular coordinates 
conductivity ratio, 21/20 
coefficients introduced in equations (2) 
thermal conductivity tensor 
thermal conductivities of matrix and 
material of spheres 
volume concentration of spherical 
inclusions 
temperature. 

Superscripts 
* perturbations of mean temperature 

caused by test sphere 
' connected with test sphere 
^ 

field inside test sphere. 

under question, which play the role of thermodynamic 
fluxes, are entirely determined by corresponding 
gradients of temperature, admixture concentration, 
velocity components, etc., which stand for appro- 
priate thermodynamic forces. 

However, it is certainly not so in the opposite case, 
when averaged structural mixture properties, and 
primarily the volume concentration of discrete 
inclusions, are macroscopically non-uniform. Then 
the gradients of these properties emerge, which can 
contribute to the fluxes and thereby change their struc- 
ture in a rather drastic manner. In particular, one can 
anticipate that a component of the heat flux normal 
to the direction of the temperature gradient will make 
its appearance in a disperse mixture if the gradients 
of the mixture concentration are not parallel or anti- 
parallel to that direction, let alone a possible depen- 
dence of the thermal conductivity on the modulus of 
the latter gradient. 

Surprisingly enough, only a few indications to this 
important effect of principal interest in the current 
literature are known. First of all, it was stated and 
proved in ref. [7] that the velocity of hindered setting 
in a dilute suspension depends on the macroscopic 
vertical inhomogeneities of the suspension. Later on, 
a similar model was proposed for heat transfer in a 
dilute non-uniform dispersion of spherical particles 
[8]. Lastly, an attempt to revise and refine the modern 
methods of averaging as applied to slightly inhomo- 
geneous disperse mixtures was recently begun in ref. 
[9]. 

In what follows, we shall treat heat transfer under 
steady conditions in a dispersion of equal spheres 
randomly distributed in the ambient continuous 
medium. The volume concentration of the spheres in 
the dispersion is assumed to be a linear function of 
one of the Cartesian coordinates, the length-scale of 

such a dependence being large as compared with the 
sphere radius. The orientation of the gradient of the 
mean temperature, which is supposed to be identical 
for the ambient medium and the embedded spheres 
relative to that of the concentration may be arbitrary. 
However, the volume concentration is either small 
as compared with unity or moderate, thus giving an 
opportunity to employ a simplified model of transfer, 
within the frames of which the non-overlapping prop- 
erty of rigid spheres may safely be ignored [6]. Such 
an assumption suffices for drawing all significant prin- 
cipal conclusions that concern the effect of the spatial 
inhomogeneity on the effective transfer properties of 
a dispersion. Generalization to dispersions of higher 
concentration can be attained at the cost of making 
the calculations more complicated, but without intro- 
ducing new difficulties of a principal nature. Since the 
reasoning and calculation presented below are also 
called to provide for a guiding manual that indicates 
how to deal with more complex situations, they are 
successively set out in some detail. 

2. MEAN TEMPERATURE FIELD 

Below we make use of dimensionless coordinates x 
scaled with the radius a of the spheres. Then the vol- 
ume concentration of the spheres can be written as : 

p(x0+r) = po+e(m-r) P0 = p(xo), 

m = Vp/IVpl ,  (1) 

in the vicinity of an arbitrary point x0, where e = [Vp[ 
is a small parameter of the order of alL,  L being the 
length-scale of the spatial macroscopic inhomogeneity 
of the dispersion under consideration. 

The mean heat flux is to be defined in the form : 

q = -~-l~.V~ ~. = All+e2A2(m,m),  (2) 
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where ~, stands for a conductivity tensor, I is the unit  
tensor, an asterisk signifies the operation of diadic 
multiplication and z = z(x) presents the mean tem- 
perature field, Aj ( j  = 1, 2) being regarded as some 
unknown coefficients. It follows from equation (2) 
that : 

q = - ( 2 o / C Z ) E f l ( p ) V x + e 2 7 ( p ) ( m ' V z ) m ] ,  (3) 

if Aj are scaled with the thermal conductivity 20 of the 
ambient  medium, A~ = 20fl(p) and A2 = 207(fl), fl and 
7 depending additionally on the ratio x = 21/20 of the 
phase thermal conductivities and on the dimensionless 
parameter e. 

It should be emphasized that the expression of the 
tensor ~( of the second rank in equation (2) is the most 
general one which could be constructed on the basis 
of the unit  tensor and of only a vector m inherent to 
the dispersion on average, while formula (3) presents 
the heat flux as the most general linear vector com- 
binat ion that could be formed with the help of vectors 
m and Vz, which are only capable of affecting heat 
transfer in that dispersion. 

When confining ourselves to the analysis of the 
situation accurately to the terms of the order of e z 

inclusive, we are free, with account of equation (1), to 
assume that : 

f l ( p )  =f lo[ l+ef l j (n l ' r )2+e2f l2(m' r )2]  flo = f l (Po) ,  

fll = t o  t d f l / dP lp=p  o t2 : 0 - 5 t O  I d2f l /dpElp=p o, 

~'(P) = fl0'~0 70 = flo IT(p0), (4) 

where again t0 and ?0 may depend on e and x. 
The equation of heat conservation in the dispersion 

reduces under steady conditions to Vq = 0 [3]. With 
the accuracy up to terms of the order of e 2 this gives : 

[1 + eft1 (m- r) + e2f12 Im • r)2lAr + eft, (m- Vr) 

+2e2f lE(m' r ) (m'Vx)+ezy0(m'V)(m'Vx)  = 0. (5) 

If a solution of this equation is looked for in the 
form: 

:=  "C0 "~-e'~" 1-1- g2"C2, (6) 

then equation (5) leads to a set of equations : 

A %  = 0 A'~ l = - f l l ( m ' V ' t 0 )  , 

Az2 = (fl 2 -2 f l2 ) (m ' r ) (m 'Vzo)  

--70(In" V)(m" V % ) -  fit (m" Vz0. (7) 

It is convenient to choose one of the coordinate axes 
(say, z) along unit  vector m. If the direction of q is 
constant  throughout the entire region under study and 
defined by a unit  w,'ctor l lying in the plane (x, z) a 
general situation with an arbitrary mutual  orientation 
of m and I can be subdivided, because of the linearity 
of heat transfer, into two elementary ones, when I is 
directed either along m ( in . l  = 1) or normally to m 
(m" l = 0). In the first case (situation I) we get from 
equations (2), (6) and (7): 

q=-~flom Vz- t0 
fl+e2~ 

B - - m ,  

z2 I z31 z = c o n s t + z - e f l l  ~ - yoZ+ (f12-f12)~ - B 2 

z = m ' r .  (8) 

In the second case (situation II) : 

q = - ~f lo(1  +$,fllZ+g2fl2z2)l V ~  = l, 

z = c o n s t + x  x = l ' r  z = m ' r .  (9) 

In both cases the mean temperture gradient is taken 
to be equal to unity. In a general case, a suitable 
solution of equation (7) may be written as a sum of 
those in equations (8) and (9). 

In order to get the functions t0 and ~0, which are 
necessary to make equation (3) closed by virtue of 
equation (4), we shall resort to the method of ref. [6] 
according to which a special boundary  problem about  
perturbations of the mean temperature field caused 
by a single test sphere has to be solved. The solution 
of the problem is to be used while formulating non-  
linear algebraic equations for the mentioned functions 
that reflect requirements of the self-consistency of the 
theory being developed [6]. Formulae (8) and (9) hap- 
pen to be sufficient to state the test sphere problem in 
an explicit form. 

3. TEST PARTICLE PROBLEM 

Let us consider the temperature field around a test 
sphere with the centre positioned at the point x~. If  
the dispersion concentration is not  too high, we may 
neglect the necessary condition that rigid spheres can- 
not  overlap. It amounts  to the concept that regions 
nearby the test sphere surface do not  differ from those 
far away as pertains to their ability to transport  heat, 
and there is no concentric layer throughout which 
the effective thermal conductivity varies [6]. Then we 
arrive at an approximate model of moderately con- 
centrated dispersions. In conformity with this model, 
the test sphere is regarded as that immersed into a 
homogeneous fictitious medium whose properties 
coincide with those of the dispersion as a whole. 

The temperature outside the test sphere 
(r = Ix-x~l > I) can be presented as z+z* ,  where 
z* is the perturbation of the mean temperature r, 
identified in equation (6) or in equations (8) and (9), 
due to the presence of that sphere. The temperature 
inside the sphere (r < 1) is denoted as f. Similarly to 
equation (6) we assume that : 

z* = ~*+erl*+~2z * f = ¢0+e¢l+e2f2.  (10) 

It is easy to see that variables ~* satisfy equations 
of the same form as those listed in equation (7), 
whereas Cj are governed by the usual Laplace equa- 
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tion. Pertinent boundary conditions are to be written 
as follows : 

f1<  ~ r = 0 ;  

and at r = 1 : 

z*--*0 r ~ o o ;  j = 0 , 1 , 2 ,  

(11) 

f j = z j + z *  j = 0 , 1 , 2 ;  x n V f o = f l o n ' V ( % + z * ) ,  

tcnV'c i = fl; [n- V(~" 1 -~- TI ~ )  + J~i (m" r)nV(*0 + r*)], 

lcnV'e2 = fl~[n'V(z2 +z*)  

+/3] (m- r)nV(T, + z*) + fl~(m" r)2nV(% + z*) 

+ 7~(m- V(zo + z*))(m • n)]. (12) 

Here n is the external normal unit  vector at the sphere 
surface and the prime is introduced to emphasize that 
flj ( j  = 0, 1, 2) and 7~ refer to the point r~, where 
p = p~, but not  to ro. 

The mentioned equations and the conditions in 
equations (11) and (12) determine the test sphere 
problem. It is subdivided into three correct boundary  
problems for z* and fj ( j  = 0, 1, 2) which correspond 
to different orders in powers of the small parameter e. 
It is convenient to solve these problems separately for 
situations I and II identified by equations (8) and (9), 
respectively. It should be noted that merely fj(r) is 
actually needed to formulate the self-consistency 
equations [6]. 

3.1. The zeroth approximation 
When considering situation I with allowance for the 

last equation in set (8), we get, in a straightforward 
manner,  that : 

"fo = Az  = ArcosO 

where : 

3/~; 
24 - -  - -  

2 ~  + x 

"Co = Br-3z  = Br 2cos0, (13) 

B x = - - .  (14) 
2fl{) + t¢ 20 

The same expressions holds true also in situation II 
i fx  = rs in  0cos q~ is substituted for z in relations (13), 
0 and 9 being the polar and azimuth angles of the 
usual spherical coordinate system. 

3.2. The first approximation 
In situation I when expressions (13) are relevant, 

the right-hand side of the equation for z* [see the 
second equation in set (7)] turns out to be : 

Bz B 
• = - ~ 7 ( 1 - 3 c o s ~ 0 ) ,  -~i(m V**) -~" Oz ? 

and a partial solution of that equation reads : 

~ Bz ~ fi~ Bcos~ 0 /~ B 
Tl$.p • - 2 r 3 - 2 r 6 (1+2P2),  

Pz being a Legendre polynomial. A general solution 
of the Laplace equation for z* and f outside and 

within the test sphere, respectively, that satisfies con- 
ditions (11) is well known. Thus in situation I we 
obtain : 

z* = f l q B [ - -  1 C1 ~r (1 +2P2)  + ~ - P 2 +  ? ]  

~, = fl'le(C3r2p2 + C4). (15) 

The constants involved in equations (15) have to be 
found from equations (12), which give: 

--  3fig + 2~  1 
C, 3(3fl; +2~)  C 2 = - 7  

2fig 2 
C 3 -  3fl~+2x C 4 = - ~ .  (16) 

Quite similarly, in situation II we get in succession : 

- flq (m" Vz*) = 3flq B cos 0 sin 0 cos ~o, 
r 3 

p ' B  l 
Z*p = -- - -  r P 2  cos q~, 

' 6 

and next:  

z* = f l ' l B I -  l + D~ qP~2 J 

f j  = fl]BDar2p~ cos tp, 

with: 

1 2fl; -- BOil ;  - 2x) 
D1 = 6B 3 f l ; + 2 x  

(17) 

fl~ 1--3B 
D 2 -  

3B 3fl~ + 2x 

(18) 

Parameter B involved in both equations (16) and (18) 
is defined by equation (14). 

3.3. The second approximation 
Consider first, situation I. In this case we derive 

from equations (13) and (15) the relations: 

B 
(m" r)(m" V~*) = rS (1 - 3 cos 2 0) cos 0, 

3B 2 
(m.  V)(m" W0*) = - ~ -  ( 3 -  5 cos 0) cos 0, 

(m" V~0*) = - - (1 - 3 cos 2 O) 
r 

3Cl ] 
+ ~ -  (3-- 5 cos 2 0) cos 0, 

which define the right-hand side of the equation for 
z*, a relevant partial solution of  which takes the form : 

* = VI (P3+4P1)+ V2r-2(2P3+3PI),  (19) T2,p 

n 3 * 2 
V, = ~ [ 2 ( f l l )  -2 f l [ ]  V2 = V2o+y~V2~, (20) 
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v:0 = -~o~, ( /~)  ~ V~l = ~0~. 

By making use of both the general solution of the 
uniform equations for r* and boundary conditions 
(12) we get, after a simple, however lengthy, cal- 
culation : 

Z~ = %.p+Elr-2pi +E2r-4p3, 

"~2 = E31"PI + E4r3P3, 

where z~.p is identified in equation (19) and : 

(21) 

El = Elo+7'oEll E2 = Ez0+ygE21, 

1 
E1 o -- 2f{~ +~  {fg[-~(f'02(2-- 2CI)B 

- 6 f ~ B -  6V201 - x(4Vl + 3 Vz0)}, 

1 
Ell 2ffo_t_~c {ffo[~B+6V21]+ 3~V21}, 

E 3 = E 1 + 4 V1 + 3 V2 E 4 = E 2 + V l -~- 2 V2. (22) 

Quantities B, Cl and Vl, II2, V2o, Vzl are defined in 
equations (14), (16) and (20), respectively. 
Expressions of E20 and EEl are readily obtainable as 
well. They are not written down, however, since they 
do not affect the subsequent calculation. 

It should be noted that equation (19) does not vanish 
when r ~ ~ ,  so that equation (21) does not satisfy 
the boundary condition at infinity listed in conditions 
(11). This is due to the fact that the validity of the 
expansion of f(p)  in equation (4) is restricted by a 
space region in which the condition r < e- l holds true. 
Otherwise that expansion is evidently incorrect. This 
difficulty can easily be avoided by imposing the con- 
dition of rE* being equal to zero at a certain radial 
distance r = R m ~ 8 - l ,  which happens to be large as 
compared with unity in view of the supposed smallness 
of e. After performing manipulations needed to derive 
new expressions of z~" and ¢2, which depend addition- 
ally on Rm, we are free to use the limit transition Rm --* 
or. As a result, we again obtain equation (19) which 

must now be thought of as the zeroth approximation 
in powers of Rm ~. 

A similar calculation can be carried out in situation 
II as well. We have : 

B 2 
(m" r)(m" V~*) = - - -  cos 0 sin 0 cos ¢p, 

1,2 

(m" V) (m" Vx~') := - 3B (1 - 5 cos 2 0) sin 0 cos ¢p, 
/ ,4 

-- 3 I1 -- ~J-21 ] cos2 O} sin 0 cos q~, 

and, next : 

2 l l 1 * - [gW,(3Pi +~P3)+  W2r 2PI 172, p - -  

1 - 2  1 ( 2 3 )  -t-gW3r (e, +-~e~)lcosgo, 

" 
W , =  [ 5 ( f q - 4 f l ) ]  W 2 = - ~ - ( f l )  2, 

w3 = w 3 0 + % w 3 ,  W,o = - ¼ B o , ( f l )  2 

3 (24) W31 = ~B. 

Further, when accounting for conditions (11) we 
arrive at : 

z* = -C~.p + (Fjr-2P] +F2r-4e~)  cos (p, 

f2 = (F3rPI + F4r3e~) cos q~, (25) 

instead of equations (21) and, by again using the 
boundary conditions at the sphere surface, we get : 

Fl = F~0+y~Fll F2 = F20+y~F21, 

l r 3 t 2 I 
F,o - 2fg + ~  {flo[~-(f,) (g -3DI )B  

+-~ f l ~ ( 1 - 2 B ) - 2 W 2 ] - x [ 6 W ,  + W:]}, 

0.3 
Fl l  (fib + ~:)B, 

2f{~ + tc 

& F1 +6Wl + l = w ~ + ~ w , ,  

F4 = F2 + ~ W l  +~W3,  (26) 

instead of equations (22). Here B, D and Wl, W:, 
W30, W31 are understood as quantities identified in 
equations (14), (18) and (24) and expressions for F20 
and Fzl are again dropped out. 

4. REQUIREMENT OF SELF-CONSISTENCY 

In accordance with the method suggested in ref. 
[6], the mean transient heat flux is expressible in the 
following form : 

q(x0) = - 40 W ( x 0 ) -  ( 4 , -  & )  3 
a 4ha 

x f p(x'o)Vxo~(XolX'o) dx'o. (27) 
JI x 0 -x~)l  <~ 1 

Again the dimensionless coordinates are used, and the 
integration is to be carried out over those positions x~) 
of the test sphere centre in which the point x0, in which 
the heat flux had to be determined, lies within that 
sphere. Because of equations (1), the expression : 

p(x'o) = p ( x 0 - r )  = p(xo)-e(m'r )  r = Xo-X'o, 

(28) 

is valid and must be used in the integrand of equation 
(27). 

This expression helps one to obtain expansions of 
quantities f5 ( j  = 0, 1,2) and 2~, regarded as functions 
of xa, in the vicinity of the point x0 in powers of 
r = Ix0-xal .  This leads to writing these quantities 
in terms of similar ones related to the point Xo. In 
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particular,/3~ =/32 and 7~ = 7o accurately to the terms 
of the order of e2. 

Let us calculate Vxof(XolX~) = Vf(r) with the help 
of equations (10) and of the expressions for fj(r), 
j = 0, 1,2, derived in the preceding section. After 
simple manipulat ions we get in situation I with the 
accepted accuracy : 

3/3~ 
Vio - 2fl~ + x  - T°°+eT° l rC°sO+e2T°2r2c°s2  O, 

V i i  = 2/3]BC3rcos 0 = (T,  1 +gTlzrcos  0)rcos 0, 

Vfz = T2, + 3T22r2(3 cos 2 0 -  1), (29) 

where the following parameters are introduced : 

3flo 3/3o/3~ 
Too - To, - 

2/30 + x (2/30 + x) 2' 

3/30 
T02 - [/32 (2/30 + x) - 2 (/3,) 2/3o], 

(2/30 + ~)~ 

4/30/3, (/30 - ~;) 
T , I  

(2/30 + x) (3/3o + 2x) 

T, 2 = -- 4 { [ -  2/3o/32 (/3o -- x) - (flo/31) 2] (2/3o + x) 

x (3/3o + 2x) + (/30/3,) 2 (/3o -- x) (12/3o + 7x) } 

x [(2/30 + x) (3/30 + 2x)] -2 

T21=T2~o+y0T2~l T 2 ~0 = E ,o +4 VI+3 V2 o  

T21~ = E~I +3V2,.  (30) 

Here quantities fls (J = 0, 1, 2) and Yo referred to the 
point x0 are involved, and the above expressions of 
different coefficients are used. 

Similarly, in situation II we obtain : 

3/3~ 
V~0 Too +~Tolr  cos O+,g2T02 r2 cos 2 0,  

2fl~ + x 

Vi i  = 3fl] B D  3 r cos 0 = (7~11 + e T, 2r cos 0) r cos 0, 

V~2 = T2 ,+ f ' 22 (5cos20-1 -2s in20cos2q) ) r2 ,  (31) 

where coefficients Too, To1 and To2 are the same as 
those defined in equations (30) and : 

~ , ,  = /3o/3,(-/3o +4~¢) 
(2/30 + x) (3/30 + De)' 

T,2 = { [-- 2/30/32 ( -/30 + 4x) + (/3o/3~)] (2/30 + x) 

x (3/3o+2~)+(/3o/302(-/3o+4~c)(12/3o+7~c)} 

x [(2/30 + ~) (3/30 + 2~)] - 2, 

T'21 = x/~'21o"}'-~oT211, 
T21o 6 l = F , o + ~ W ~  + W2+~Wso, 

7'2,, = F, ,  +~Ws,.  (32) 

Now we are able to find the integral included in 
equation (27). When representing the actual heat flux 
as a superposition of those corresponding to situations 

I and II and by making use of equations (28), (29) 
and (31), we in situation I finally get: 

3 ¢ 
U~ Jlx0-x~, P(X'°)Vx°~(x°lx'°) dx~ 

= poToo+~2[O.2(poTo2- To1) 

+ 0 . 2 ( p 0 T , 2 - T ,  1)+poT2z], Po = p(xo), (33) 

where the coefficients Too, To2, To,, T~2, Tll ,  T2, are 
defined by relations (30). Similar equations with Tll ,  
T,2 and T:I being replaced by T,, ,  T12 and T2~ are 
valid for situation II. 

Equations (27) and (33) can be written at any point 
xo, so that now there is no sense in retaining a zero 
subscript in the notat ion of x0 and Po. When equating 
the expressions of q that result from equations (3) 
and (27) and allowing for equation (33), we derive 
equations for situations I and II : 

fl(p)+e27(p) = 1 + 0 ¢ -  1) 

x p roo+  ~ - [ p ( r o a + r , 2 + 5 r 2 , ) - r o , - r , d  

{ /3(0)= 1 + 0  c - l )  p T o o + ~ - [ p ( r o : + T , 2  

+57~2 , ) -To , -7~11} .  (34) 

Now it is easy to prove that equation (34) is satisfied 
if the expansion : 

/3(p) =/3(o)(p)[ 1 +~2/3(,)(p)] (35) 

is true, in which case the separation of terms of differ- 
ent orders in powers of e yields : 

/3(0) = 1 + ( x -  1)pT0o, (36) 

and 

fl(°)(/3(')+7o) = (x--  1){0.2(pTo2- ToO 

+ 0.2(pT12 - T, 1)+ p(T21o + 7o T2, ,)}, 

/3(0)/3(,) = ( x _  l) {0.2(pTo2 - To1) + 0.2(p7~,2 - 7 ~, i) 

+p(7~2,o +7oT2,,)}. (37) 

Equation (36) corresponds to retaining terms of the 
order of ~0 whereas two equations (37) are obtained 
by singling out contributions proportional to either m 
or I in terms of the order e:. An equation stemming 
from the terms of the order of e in equation (34) does 
not  arise altogether. It is quite understandable because 
the functions in equations (2) and (3) determining the 
thermal conductivity tensor are true scalars, and this 
implies that they ought not  to depend on the direction 
of m, that is, to contain the terms of the order of e. 

It is easy to obtain from equation (36) a familiar 
formula : 

fl(O)(p) = ¼ { G + ~  G = 2 - ~ c + 3 ( x - - l ) p .  

(38) 
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It describes the effective thermal conductivity of a 
macroscopically uniform dispersion within the scope 
of the used model of moderately concentrated dis- 
persions [6]. 

Equations (37) yield an expression for 7o whence : 

( x -  1)[0.2(pTi2 - T I ~ )  
- o .2 (p t ,~  - t , , )  + ( p ~ , o  - t~ ,  o)] 

fl(o)__ (j¢__ 1)p(T211 __ 521, ) 

(39) 

and, next : 

fl(,) = (~-- 1) [0.2(pTo2- To,) 
fl(0) 

+ 0.2(p~,2-7~1 j + p(~2 ,0-~0~,  1)1. (40) 

This defines also fl~ and r2 introduced in equations 
(4) in the form : 

fll = 3 ( x - -  1)(G 2 + 8x)-1/2,  

r2 = 4.5(x-1)2[G24-8K]-I[1-G(G2+8x)-~/2]. (41) 

Equations (38)-(41) suffice to describe the thermal 
conductivity tensor (2) in full detail. 

5. EFFECTIVE CONDUCTIVITIES 

In a physical dimensional reference frame the func- 
tions that determine the components of the con- 
ductivity tensor from equations (2) can be written as : 

A l  = 2off(°)(1 +e2fl °)) A2 = 2ofl(°)Vo e = ~IVPl. 
(42) 

Such a structure of this tensor enables us to draw 
the following principal conclusions. First, the non-  
uniform dispersion under  study represents an aniso- 
tropic heat-conducting medium characterized by a 
symmetric thermal conductivity tensor of the second 
rank. Second, scalar coefficients of thermal con- 
ductivity at a point are dependent on only two func- 
tions of the local cencentrat ion at the point and of its 
gradient, both of them including the phase con- 
ductivity ratio, x := 21/20, as a parameter. Third, 
values of coefficients relating the heat flux to the mean 
temperature gradient at a certain point differ from the 
isotropic bulk thermal conductivity of a cor- 
responding uniform dispersion, the constant  con- 
centration of which equals that of  the original dis- 
persion at the leoint under  otherwise identical 
conditions, by quantities of the second order in the 
concentrational gradient. 

It is instructive to consider, by way of example, 
particular situations when Vz is either parallel or anti- 
parallel or normal to m. In these situations we have, 
respectively : 

q = - 2 f V ' ¢  2~ = 2off(°)[1 +e2(fl( l)+~,)]  
(m" V~) = IWl, 

q = -) . l -Vx 2 H = 20fl(°)[1 +e2(flo)--T)] 
( re 'W) = - I W l ,  

q = -21V~ 2 .  = 20fl(°)(1 +e2fl °)) (m'Vx) = 0. 
(43) 

Coefficients 2~, 2i- and 2± have the meaning of two 
longitudinal and of a lateral thermal conductivity with 
reference to the mutual  orientation of V~ and m. 

The anisotropy of heat conduction may also be 
described by introducing a complementary con- 
stituent of the effective heat flux directed along m 
irrespective of the direction of Vx, as is the case with 
definition (3). 

Funct ion fl(O)(p) represents the relative thermal con- 
ductivity of macroscopically homogeneous dis- 
persions of moderate concentration. It is illustrated in 
ref. [6], and so there is no need to dwell upon its 
dependence on p and on the parameter K once more. 
What  is important  in the context of this paper is that 
it either turns to zero at a finite p = p*, when x is 
smaller than unity (p* = 2/3 at x = 0), or becomes 
unreally high at large x (diverges at p* = 1/3 when 
x = oo). This is an obvious consequence of the neglect 
of  the spheres being unable to overlap, and sets limits 
on the applicability of the employed model of mod- 
erately concentrated disperse mixtures. If  x ~< l, fl(0) 
can be shown to give satisfactory results in the range 
o fp  from zero up to about  0.2-0.3. If x >> l,  the range 
of approximate validity of this function becomes even 
more narrow. Anyhow, the above results are surely 
inapplicable when p >~ 0.3, and so we shall consider 
if  l) and 7 only within the interval 0 < p < 0.3. 

Dependences of the quantities under question on p 
are rather different in various ranges of r.  They are 
plotted in Figs. 1 4 .  When x is much smaller than 
unity, both fl(l) and ~ are small and decrease with p ; 
they become negative as p exceeds a certain value (Fig. 
1). As K grows when remaining smaller than unity, 
fl(l) and ~ become positive at any p (Fig. 2). When x 
goes over the threshold x = 1, fl(f) and ~ are almost 
constant and grow with p (Fig. 3). After that, an 
increase in x results in the occurrence of slight maxima 
of  both flo~ and 7 as functions ofp .  At last, when x is 
very large against unity, these maxima vanish, and fl(l) 
and 7 transform into increasing positive and decreas- 
ing negative functions, respectively (Fig. 4). It  is worth 
noting that the absolute values of these functions 
become very large when x >> 1. 

Thus the coefficients in equations (43) happen to be 
rather intricate functions of p and x. In a general case, 
it is difficult to suggest reliable model situations which 
could be helpful in explaining the behaviour of these 
coefficients in considerable detail. 

In a general case, a complicated picture of the local 
temperature field develops on the level of individual 
spheres, and it is not  a simple matter to explain the 
particulars of the dependence of the mean heat flux 
upon p and x. Numerical investigation of this field 
around and within several spheres, similar to that in 
ref. [10], is apparently needed for such an end in view. 
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Fig. 1. Dimensionless coefficients/3 ~') (a) and 70 (b) as func- Fig. 2. The same as Fig. 1 for tc < 1. 
tions of p for ~c << 1 ; figures at the curves give values of ~c. 

6. C O N C L U D I N G  R E M A R K S  

The main novel inference of the analysis of the 
present paper consists in establishing the fact that 
macroscopic inhomogeneity of either a composite 
material with discrete inclusions or a dispersion of 
another origin influences the dispersion conductivity 
and, in particular, gives rise to new effects of deviation 
of the mean heat flux direction from that of the mean 
temperature gradient. As a result, a scalar thermal 
conductivity happens to be insufficient to describe 
heat transfer in these media, and a tensor of the second 
rank is necessary for the purpose. 

This effect seems to be undoubtedly important  in 
principal, even though it is insignificant qualitatively, 
as is the case in disperse mixtures with badly con- 
ducting inclusions. However, a quantitative influence 
of the spatial inhomogeneity on the effective thermal 
conductivities may not  be ignored in dispersions of 
well conducting inclusions (to >> 1), when flo) and 7 
can remain large even after multiplication by the small 
factor e 2 and essentially contribute to the con- 
ductivities identified in equations (43). 

Among practical problems in which this effect is 
important,  the heating of either a stationary [11] or a 
fluidized [12] granular bed by a hot rigid wall is to be 
mentioned. Because of the inpenetrability of the wall 

for solid particles of the bed, there originates an adjac- 
ent interlayer of excessive porosity, the thickness of 
which is of  the order of the particle size. Due to the 
ensuing variation in the particle volume concentration 
across the interlayer, the effective thermal con- 
ductivity is monotonously  decreasing from its value, 
specific for the bulk of the bed to that of  air or another 
ambient gas, when the wall is approached. However, 
just  the same variation favours the enlargement of the 
conductivity for reasons pointed out and discussed in 
this paper, that is, causes the opposite influence. It is 
evident that both factors must  be taken into account 
while treating the problem. 

It should be noted in this connection that much 
remains to be done in order to incorporate these fac- 
tors into an analysis. First, the granular bed under  
consideration is not  of moderate concentration, and 
a proper generalization of the above results is needed 
to get a reliable representation of the dependence of a 
pertinent effective conductivity on the concentration 
gradient. Second, all the results concerning the con- 
ductivity have been derived with the help of the con- 
t inuum approximation. It is evident that a necessary 
condition of applicability of that approximation 
requires E = a/L << 1, which is certainly not  true 
within the wall interlayer. Elucidation of these points 
indicates tempting directions of future work. 
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Fig. 3. Th’: same as Fig. 1 for K > 1. Fig. 4. The same as Fig. 1 for K >> 1. 

It is worth noting that there is a distinction between 
the processes of heating and cooling of a granular bed 
with the aid of a solid wall. This inference is caused 
by a difference of the heat conductivities, equations 
(43), in the direction of the concentration gradient 
and in the opposite direction. Since the function y is 
negative at large K (Fig. 4), the rate of the former 
process is somewhat lower than that of the latter one. 
It is of principal significance because it offers an evi- 
dent opportunity for an experimental check of the 
developed theory. 

To conclude, we should emphasize once again that 
all the results obtained have relevance not only to 
heat transfer but also to transport of other scalar 
quantities, such as mass of admixture and electric 
charge. 
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